
H istorically, there is a rich tradition of attempting to
couple different length and time scales in serial fashion.

By this we mean that one set of calculations at a fundamental
level, and of high computational complexity, is used to evalu-
ate constants for use in a more approximate or pheno-
menological computational methodology at longer length or
time scales.

In pioneering work of this sort in the 1980s, Clementi and
coworkers1 used high-quality quantum-mechanical methods
to evaluate the interaction of several water molecules. From
this database they parameterized an empirical potential for
use in molecular-dynamics atomistic simulations. Such a
simulation was then used to evaluate the viscosity of water
from the atomic autocorrelation function. Finally, the com-
puted viscosity was used in a computational-fluid-dynamics

calculation to predict tidal circulation in Buzzards Bay, MA.
This tour de force of computational physics is a powerful
example of the sequential coupling of length and time scales:
one series of calculations is used as input to the next up the
length and time hierarchy.

There are many other examples in the literature. But what
underlies all these schemes is that an appropriate computa-
tional methodology is used for a given scale or task, whether
it be the accuracy of quantum mechanics at the shortest scales
or fluid dynamics at the longest scales. In contrast, there has
been comparatively little effort devoted to the parallel cou-
pling of different computational schemes for a simultaneous
attack on a given problem; in our case, our interest dictates
specific attention toward issues in materials or solid-state
physics. We will focus specifically on the coupling of length
scales for the three mechanics describing materials phenom-
ena: quantum mechanics, atomistic mechanics, and contin-
uum mechanics.

Unified dynamical treatment
This challenging paradigm of computational science de-

mands a unified dynamical treatment of a physical problem,
in which the tools of engineering, physics, and chemistry are
applied in a seamless formalism. We report such an accom-
plishment for the study of brittle fracture in silicon, though
our approach has general applicability. In a single concerted
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Figure 1.Geometrical decomposition
of a silicon slab into the five different
dynamic regions of a MAAD
simulation.
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simulation of dynamic fracture comprising
the finite-element method, classical mo-
lecular dynamics, and quantum tight-binding
dynamics, we demonstrate that spanning
the length scales with dynamical bridges
between the different physical descriptions
is feasible. Our approach maps naturally
onto scalable computer architectures.

The traditional approach for studying
fracture is to adopt continuum mechan-
ics,2,3 the macroscopic view of matter. Be-
cause continuum mechanics allows mater-
ial lengths to go to zero, there is no natural
small-length cutoff, such as the size of an
atom. Hence, a failure mechanism describ-
ing the loss of local material cohesion (for
example, void formation) does not arise
naturally from this macroscopic descrip-
tion. At the finer level of description of
classical atoms interacting through empiri-
cal force laws, material decohesion does
arise naturally,4,5 and we choose to label
this length scale the mesoscopic regime.
We can even go one level finer. Treating
bond breaking with an empirical potential
may be unreliable, and a quantum-me-
chanical treatment may be desired. This ab
initio level of description we call the micro-
scopic regime. And if the crack is moving,
a unified macroscopic, atomistic, ab initio
dynamics (MAAD) description must be
brought together into a seamless union,
embracing all the size scales, from the very
small to the very big. We now describe an
implementation of such a program.

Application to silicon
Our MAAD simulation is composed

of computational procedures formulated in
terms of a spatial decomposition of the
system and has an obvious applicability for
parallel processing. Our study is the rapid
brittle fracture of a silicon slab flawed by a

microcrack at its center and under
uniaxial tension. Figure 1 shows the
geometrical decomposition of the sili-
con slab into the five different dynamic
regions of the simulation: the contin-
uum finite-element (FE) region; the
atomistic molecular-dynamics (MD)
region; the quantum tight-binding
(TB) region; the FE-MD “handshak-
ing” region; and the MD-TB “hand-
shaking” region. The image is the
simulated silicon slab, with expanded
views of the FE-MD (orange nodes
and blue atoms) interface and the TB
(yellow atoms) region surrounded by
MD (blue) atoms. Note that the TB re-
gion surrounds the crack tip with bro-
ken-bond MD atoms trailing behind this
region. Only a proportion of the FE and
MD regions is shown, since their extent
is large.

The exposed notch faces are x–z
planes with (100) faces, with the notch
pointed in the <010> direction. There
are 258,048 mesh points in each FE
region, 1,032,192 atoms in the MD
region, and approximately 280 unique
atoms in the TB region. The lengths of
the MD region are 10.9 Å for the slab
thickness, 3649 Å in the primary direc-
tion of propagation, and 521 Å in the
direction of pull (before pulling). Peri-
odic boundary conditions are imposed
at the slab faces normal to the direction
of thickness and to crack propagation.
The full pull length of the FE+MD
system is 5602 Å. In our studies, the
time for a TB force update was 1.5 s,
that for the MD update was 1.8 s, and
that of the FE update was 0.7 s. We
could thus afford to double the size of
the FE region in order to accomplish
computational load balancing but

A computa-

tional approach

to the simulation

of  crack propaga-

tion in silicon

seamlessly unites

quantum,

atomistic, and  

continuum

descriptions

of  matter
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without any sacrifice of wall-clock time. The TB region was
relocated after every 10 time steps.

In the “far-field” regions, we have a continuum treated
by the well-known FE procedure6 (see “Ingredients of the
Finite-Elements Technique,” above). This macroscopic de-
scription merely needs the constitutive law for the material.
One processor is used for each of the two FE regions.

Around the crack, with large strain gradients but with no
bond rupture, we use the classical MD method to treat the
highly nonlinear deformation on the atomic scale (see “Ingre-
dients of the Molecular-Dynamics Technique,” p. 542). Mo-
lecular dynamics predicts the motion of the atoms governed
by their mutual interatomic interactions and requires the
numerical integration of the Newton’s classical equations of
motion. The Stillinger-Weber (SW) potential7 is taken to
represent the empirical force law between the silicon atoms.
Because MD has a large computational burden, we partition
this region spatially onto several processors (24 in the present
example).

Lastly, in the region of bond failure at the crack tip, we
use the TB formalism, which is a semiempirical electronic-
structure description of matter. It is one of the fastest numeri-
cal quantum methods containing electronic-structure
information. Rather than evaluating costly integrals, it uses
predetermined parameterized matrix elements for the material
under study. For this silicon study, we employed the nonor-
thogonal TB scheme due to Bernstein and Kaxiras.8 The
nuclei are treated as classical point objects. Because the TB
region is the most computationally demanding part of the
overall code, small TB regions must be used so as to allow
overall load balancing. We tracked the path of the crack and
placed the center of the TB region at the apex of the crack
where the bond breaking occurs.

For extended regions of bond rupture, we used overlap-
ping TB regions taken to be a “clover leaf ” of (eight) overlap-
ping TB regions, each being cylindrical and distributed to a
different processor. Each of the eight TB regions is a cylinder
with radius 5.43 Å in the y–z plane. The force on an atom

Ingredients of the Finite-Elements Technique
In the finite-elements (FE) technique, the continuum

elastic energy (which is a function of the displacement
field, a continuous variable) is integrated over the entire
volume of the sample by placing a mesh over the system.
If the displacements are known at the mesh points
(nodes), then interpolation can be used within each ele-
ment (cell) of the mesh to determine the displacement
field everywhere. The elastic-energy integral is then re-
placed by a sum over cells (triangles in two dimensions,
tetrahedra in three dimensions), and the important dy-
namical variables in the problem are the values of the
displacements at the nodes. The kinetic-energy integral
is handled similarly.

Since an energy is defined for the FE region, forces
on the dynamical variables can be obtained. Thus, the
time evolution of the system may be propagated in the
same way as in molecular dynamics (MD). In the FE/MD
handshake region, it is important to have FE mesh points
coincident with the ideal atomic sites of the MD region;
thus it is academic whether we think of these sites as
representing atoms or nodes.

The Hamiltonian, without body forces or tractions,
is defined by

    E = 
1
2
 ∫ dVemn Cmnls els + 

1
2

 ∫ dVr |u. |2,  

where e is the strain tensor, C is the elastic-constant
matrix, r is the density, and u

.
 is the time derivative of the

displacement field. The interpolation of a function within
the finite-element cell is defined by

f (x) = (A1 f1 + A2 f2 + A3 f3) / (A1 + A2 + A3),  

where fi is the value of the function at node i and Ai is the
corresponding area (as shown in the figure). Performing
the integral over each cell yields the energy evaluated on
the mesh
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where ui is the displacement
field at node i, and K and M
are local stiffness and mass
matrices that incorporate
linear interpolation in
each triangle.

Since we have a
Hamiltonian, we can
advance through time
in lockstep with the
MD portion of the
simulation, using
an identical in-
tegrator.

Interpolation
of a function within

the finite-element cell.
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residing in more than one of the overlapping TB regions was
taken to be the average value.9 The total number of unique
“clover-leaf ” atoms is therefore less than the sum of all of the
atoms in the eight TB regions. For small deformations, overall
consistency was ensured by making sure that the linear elastic
constants in all three regions were the same. We also found
from calculation that the elastic modulus of silicon using the
empirical SW potential is almost identical to the prediction of
TB for strains up to the mechanical stability limit of the bulk
solid. For more on the subject, see “Ingredients of the Tight-
Binding Technique,” p. 544.

The overarching theme is that a Hamiltonian HTot is
defined for the entire system. Its degrees of freedom are
atomic positions r  and their velocities r

.
 for the TB and MD

regions, and displacements u and their time rates of change
u
.
 for the FE regions. (The velocities and conjugate momenta

are simply related.) Equations of motion for all the relevant
variables in the system are obtained by taking appropriate
derivatives of this Hamiltonian. All variables can then be
updated in lockstep as a function of time using the same
integrator. Thus the entire time history of the system may be
obtained numerically given an appropriate set of initial con-
ditions. Conceptually, HTot may be written:

HTot = HFE({u, u
.
} ∈ FE) + HFE/MD({u, u

.
, r, r

.
}  ∈ FE/MD)

+ HMD({ r, r
.
} ∈ MD) + HMD/TB({ r, r

.
 }  ∈ MD/TB)

+ HTB({ r, r
.
} ∈ TB)

This equation should be read as implying that there are three
separate Hamiltonians for each subsystem as well as Hamil-
tonians that dictate the dynamics of variables in the handshake
regions. “MD/TB” and “FE/MD” imply such handshake re-
gions. Following a trajectory dictated by this Hamiltonian
will result in a conserved total energy. This is an important
feature of our computational approach, since it ensures nu-
merical stability.

Hand-shaking algorithms
Two crucial aspects of our MAAD procedure are the

handshaking algorithms between the FE and the MD regions
and between the MD and the TB regions. In both cases,
seamless couplings are required.9,10 

In the FE/MD handshake region (see Fig. 2), the FE mesh
spacing is scaled to atomic dimensions. Moving away from
the FE/MD region and deep into the continuum, we can
expand the mesh size. Thus we can embed our atomistic
simulation in a large continuum solid. FE cells contributing

fully to the overall Hamiltonian (unit weight) are marked with
heavy lines. FE cells contributing to the handshake Hamil-
tonian (half weight) are represented by light lines. Two- and
three-body terms (dotted lines) of SW interactions that cross
the boundary also carry half weight. Continuous lines repre-
sent unit-weight SW interactions. The FE region has displace-
ments associated with each mesh point; these displacements
follow a Hamiltonian given by continuum linear-elasticity
theory. We employ an update algorithm identical to that used
in conventional MD so that the displacements now are dy-

Figure 2. Illustration of FE/MD handshake Hamiltonian (see text).

Figure 3. Illustration of MD/TB handshake Hamiltonian (see text).

 The overarching theme is
that a Hamiltonian HTot is defined
   for the entire system.   
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namical variables that follow in lockstep with those of their
atomic cousins in the MD region.

The FE/MD interface is chosen to be far from the fracture
region; hence, atoms and the displacements of the FE lattice
can be unambiguously assigned to one another. This is accom-
plished by taking the interactions across the FE/MD boundary
to be the mean of the FE Hookean description and the MD
interatomic-potential description.

For the MD/TB handshake interface (see Fig. 3), dan-
gling bonds at the edge of the TB region are terminated with
pseudohydrogens; we add “pseudo-” because the matrix ele-
ments are carefully constructed to tie off a single bond and
ensure no charge transfer when that atom is placed in a
position commensurate with the silicon lattice. Conceptually,
the TB terminating atoms are monovalent silicons, hence the
term “silogen” used in Fig. 3.

The TB Hamiltonian is diagonalized for the sum of light
plus dark blue regions in Fig. 3. Silicon-silicon matrix ele-
ments are employed in the light-blue area, and silicon-silogen

matrix elements are used in the dark-blue region. Two- and
three-body SW interactions contributing to the handshake
Hamiltonian are designated by full lines. Broken lines repre-
sent noncontributing SW three-body terms. Only repre-
sentative SW examples are shown.

Thus, at the perimeter of the MD/TB region, we have
silogens that sit directly on top of the atoms of the MD
simulation. We imagine that on one side of the TB/MD
interface, the bonds to an atom are derived from the TB
Hamiltonian and that on the other side, they are derived from the
interatomic potential of the MD simulation. As before, the TB
code updates atomic positions in lockstep with its FE and MD
cousins. The entire MAAD procedure is formulated in such a
way that the system, in the absence of dynamic TB tracking of
the crack front, follows a conservative Hamiltonian. A de-
tailed discussion of the MAAD techniques is in preparation.9

Details of  fracture simulation
We give some important details of the MAAD simulation

Ingredients of the Molecular- 
Dynamics Technique

In the molecular-dynamics (MD) technique, atoms are
propagated through space and time using Newton’s laws
of motion. At most ambient temperatures and for most
elements, a classical (as opposed to quantum) description of
the dynamics of atomic motion is perfectly satisfactory.
All that is required is an interatomic force law.

For silicon, many force laws have been parameterized
against experimental observables. We chose that due to
Stillinger and Weber.1 It writes the total potential energy
of the system as a sum over pairs of atoms plus a sum over
triplets of atoms. The pair sum represents bonds between
atoms and is a function of their separation. The triplet sum
describes bond-bending terms and is a function of the angle
between pairs of bonds centered on any given atom. In a

covalent solid such as silicon, the bond-bending terms are
important; they are what differentiate the structural prop-
erties from those of a metal. Forces, required for the MD
position-update algorithm, are obtained from derivatives
of the potential energy.

The Hamiltonian consists of the normal kinetic energy

Ek = ∑ 
i

atoms
1
2
m|vi|

2  

plus a potential energy defined by the function

Ep = ∑ 
ij

pairs

V (2)(rij) + ∑ 
ijk

triplets

V (3)(rij, rjk, q ijk), 

where rij is the distance between atoms i and
j, qijk is the angle between bonds i–j and j–k,
V(2) is the pair potential, and V(3) is the three-
body potential.

The equations of motion are integrated
with respect to time using a multiple-time-
step algorithm based on a Trotter expansion
of the Liouville operator.2 The code is par-
allelized using a one-dimensional (1D)
domain decomposition (shown in the fig-
ure); data flow via a 1D shift operator.

References
 1. F. H. Stillinger and T. A. Weber, “Computer simula-

tion of local order in condensed phases of silicon,”
Phys. Rev. B 31, 5262–5271 (1985).

 2. M. Tuckerman, B. J. Berne, and G. J. Martyna, J.
Chem. Phys. 97, 1990 (1992).One-dimensional domain decomposition parallelizes MD code.

COMPUTERS IN PHYSICS, VOL. 12, NO. 6, NOV/DEC 1998

MATERIALS SIMULATION

542



of silicon fracture (see Fig. 1). The slab is initialized at zero
temperature, and a constant strain rate is imposed on the
outermost FE boundaries, defining the opposing horizontal
faces of the slab. A linear velocity gradient is established
across the slab; hence, an increasing strain with time occurs
in the solid slab. The solid fails at the notch tip when the solid
has been stretched by approximately 1.5%. The imposed
strain rate is then set to zero at the onset of crack motion.
Figure 4 presents the history of distance versus time for the
two crack tips, one having the TB atoms dynamically centered

at the immediate failure region. The two propagating crack
tips rapidly achieve a limiting speed of 2770 m/s, which is
equal to 85% of the Rayleigh speed, the sound speed at the solid
silicon surface. The two distance-time histories are nearly
identical. In hindsight, this
might have been expected,
since the elastic moduli of
silicon calculated from the
empirical SW potential and
from TB are nearly the same
up to the mechanical-stabil-
ity limit of the bulk solid.
More important, this indi-
cates that the handshaking
between the MD region and
the TB region is reliable.

In Fig. 5, the stress
propagating through the
slab is revealed with the help
of a finely tuned potential-
energy color scale. Note that
the stress waves are passing
from the MD region to the
FE regions with no visible
reflection at the FE-MD in-
terface; that is, the coupling of the MD region with the FE
region appears seamless. In Fig. 6, we see that the straight-
ahead brittle cleavage of the silicon slab leaves behind sur-
faces that show an increasing roughening with crack distance.
The origin of this observed surface roughening is consistent
with a suggestion by Rice,11 which we now explain.

Figure 4. Distance-versus-time history of the two crack tips, one having
the TB atoms always centered at the immediate failure region.

Figure 5. Stress waves propagating through the slab, revealed with the help of a finely tuned potential-energy color scale.

The entire
time history
of the system
may be obtained
numerically given
an appropriate 
set of initial 
conditions.
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Ingredients of 
the Tight-Binding Technique

I n the tight-binding (TB) technique, the energy of the
system is written as an eigenvalue sum plus intera-

tomic pairwise terms. The eigenvalues are parameter-
ized to be as close as possible to those of an ab initio
quantum-mechanical calculation. The sum is over oc-
cupied one-electron states up to the Fermi level. The
parameterization is of the elements that constitute the
TB Hamiltonian matrix. This matrix has to be diagonal-
ized at every time step of the simulation—that is, for
every configuration of atoms in the TB region. Since
diagonalization is O(N3) computationally expensive,
this is the most computationally complex part of the
whole coupled algorithm. Each matrix element is a
function of (a) the distance between pairs of atoms and
(b) the basis function sitting on either site. Each silicon
has one s and three p atomic-basis orbitals.

Another term in the total energy originates be-
cause, in ab initio one-electron theories such as Hartree-
Fock or density-functional theory, the total energy is not
just an eigenvalue sum; it has additional terms due to
double counting of Coulomb integrals and exchange-
correlation terms. To a good approximation, these can
be parameterized via a pairwise sum. As with the finite-
elements and molecular-dynamics (MD) regions,
forces are obtained from derivatives of the energy. The
atoms in the TB region can be updated in lockstep with
the rest of the system.

In the MD/TB handshake region, the bonds dan-
gling from the surface of the embedded TB cluster are
terminated with monovalent “atoms” that we call “silo-
gens.” These silogens are constrained to be coincident

with the silicon atoms on the inner perime-
ter of the MD region. The coupling may
therefore be envisaged as a TB cluster re-

siding in an MD void but with the outer TB
silogens sitting on top of the inner MD

silicon atoms. Careful bookkeeping in the
handshake region accounts for all the bonds.

Each silogen has a single s atomic-basis orbital.
The TB matrix is thus (4Nin + Nout)2 in size, where
Nin represents the number of silicons and Nout rep-

resents the number of silogens in each TB region.
Because the TB algorithm has high computational

complexity, we chose to represent the entire TB region
as a “clover leaf ” of overlapping TB volumes (shown in
the figure). Forces employed for propagation of atoms
in overlapping regions are taken to be the average of
those calculated in the superposed TB volumes.

The Hamiltonian consists of the same kinetic en-
ergy as for MD plus a potential energy defined by

Ep = ∑ 
n

#occ

en + ∑ 
ij

pairs

j (rij),   

where en is the eigenvalue of state n, the first sum is car-
ried out over the occupied electronic states, and j (rij)
is the pairwise interaction between atoms i and j. The
eigenvalues are calculated by solving the matrix equation

HΨn = enSΨn    

where H is the electronic Hamiltonian matrix, S is the
overlap matrix, and Ψn is the eigenvector of state n.

The matrix elements

Hlm = 〈fl|H|fm〉    

Slm = 〈fl|fm〉    

are computed within the two-center approximation and
decay smoothly to zero as the interatomic separation r
reaches a cutoff distance rc. Solving the generalized
eigenvalue problem yields the forces that are the expec-
tation values of derivatives of H and S.

The TB dynamics is advanced in lockstep with the
MD portion of the simulation, using the same time
integrator.

�Clover leaf �of overlapping
TB volumes represents

the entire TB region.
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There are two “generic” classes of materials failure:
brittle and ductile (see “Failure of Ductile and Brittle Materi-
als,” p. 546). In brittle failure, a crack propagates by atomic-
bond cleavage and the creation of surfaces. In ductile failure,
plastic deformation occurs by the motion of rows of atoms
sliding past one another on preferred slip planes (dislocations).

By comparing Griffith’s condition for brittle fracture and
the criterion of unstable stacking-fault energy for dislocation
emission (ductile failure), Rice11 predicted that diamond cu-
bic crystals such as silicon (Si) and germanium are more
likely to emit dislocations than some face-centered cubic (fcc)
metals such as iridium. Iridium, although known to cleave,
can nevertheless show substantial dislocation activity. How-
ever, in contrast to theoretical predic-
tions, silicon and germanium are
known experimentally to be brittle
materials. Rice speculated that “While
... Si should show dislocation nuclea-
tion from a crack tip at low tempera-
tures ..., the low mobility of any such
dislocations, once nucleated, may con-
demn Si even then to a brittle re-
sponse.”11

Our simulation confirms Rice’s
idea. We suggest that the spawning of
dislocations with low mobility on the
time scale of the crack motion would
likely manifest itself as an atomic-
scale roughening of the freshly
cleaved surfaces; that is, a prolifera-
tion of nucleated dislocations would
freeze upon emission and result in sur-
face disorder. Such nucleation of mo-
bile dislocations was observed in
previous simulations of fcc failure
(see “Failure of Brittle and Ductile
Materials,” p. 546, and Ref. 4).

Future prospects
We have chosen an “ideal” prob-

lem, brittle fracture, applied to an
“ideal” system, silicon, to illustrate the
MAAD-simulation approach to span-
ning the length scales. Further appli-
cations are being pursued, including
dynamical apportioning of TB proces-
sors to multiple regions of the physical
system (for example, if crack branch-
ing occurs). We wish to emphasize that
although progress has been achieved,
we view our effort as only a beginning
to a new and obviously challenging
endeavor. Improved techniques for the
three mechanics will be applied, and
more robust procedures for interfacing
the three regimes will be invented. We
believe that applications will only be
limited by the imagination of the re-
searcher.
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Figure 6. Roughening of the solid silicon surfaces increases with growing crack length. The onset of
surface roughening is shown in an expanded view.
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Failure of Brittle and Ductile
Materials

In the simulation of silicon failure, we ob-
serve features associated with rapid brittle
fracture. Brittle fracture certainly is not the sole
mechanism for the failure of materials when
they are hit hard and fast; otherwise, our world
would be quite fragile.

The two generic classes describing materi-
als failure are “brittle” and “ductile.” In the first
case, chemical bonds are broken; this is what
happens when glass shatters. In ductile failure,
such a catastrophic event does not occur.
“Tough” materials like metals do not shatter;
they bend because plastic deformation occurs
by the motion of rows of atoms sliding past one another on
preferred “slip planes” (dislocations), in contrast to bond
breaking. That is why car fenders are not made of brittle
materials like glass. The two general classes of failure do
not depend on the details of the interatomic interactions, but
they do depend on the atomic packing of the three-dimen-
sional solid. The interatomic potential dictates the packing.

The number of atomic packings in nature is limited.
Glasses do not have extended crystallinity; instead, the
atoms in glasses are packed randomly. Glasses have no
“slip planes” and therefore cannot exhibit ductility arising
from atomic planes sliding past one another.

Crystals do not have the isotropy of glasses. In a sense
a crystal is defective in view of the loss of perfect isotropy,
the defect being multiplanar and infinite in extent! Because
of the “breaking” of the perfect isotropic symmetry, slip
planes exist, dislocations are possible, and ductility may
win out over brittle failure.

The face-centered-cubic packing is known to have a

strong propensity toward ductility. However, the lack of
slip planes and the inability to characterize dislocations in
an amorphous or glassy material do not in themselves
exclude ductile behavior. Metallic glasses can exhibit plas-
tic failure. Also, crystallinity does not assure ductility;
strongly covalent solids tend to be brittle.

The figure depicts a molecular-dynamics simulation of
dynamic ductile failure of a rare-gas solid. The model
system is a three-dimensional slab having a total of
100,509,696 atoms. Only those atoms that have a cohesive
energy less than 97% of the ideal bulk value are shown,
which reduces the number of atoms seen by approximately
two orders of magnitude. The small box shows the notched
solid before uniaxial stretching is applied in the <110>
direction. After stretching, a “flower” of loop dislocations
blossoms from the crack tip, and elastic energy continues
to dissipate through the continued creation and motion of
dislocations. [See F. F. Abraham et al., J. Mech. Phys.
Solids 45, 1461–1471 (1997).]

Rare-gas solid exhibits dynamic ductile failure in this MD simulation.
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